数学建模对高职数学的意义
数学建模对高职数学的意义 摘要:高职数学是一门为学生培养数学思考能力的课程, 也是日后学习和生活中应用最广泛的一门学科。但是学生在 学习高等数学时往往缺乏主动性,这导致了数学的应用性没 有在学生的学习和生活中得到体现。这是高职院校在教学中 需要积极处理和解决的问题。因此,如何打破以往学生对数 学枯燥无味的印象,提升学习兴趣是高职院校目前亟待解决 的问题。本文探讨了高职数学如何进行创新教育,并结合数 学建模实践,使学生寓教于乐,让学生学习正确的思维方式, 才是高职数学课程的最大价值所在。关键词:数学建模;
高职数学;
创新教育 1将数学建模运用到高职数学中的意义 数学建模是将数学知识与实际问题相贯通融合的一种 模式。针对高职数学课程一门,本文探讨了如何结合数学建 模进行创新教育。高职教育是以培养发展型人才为主要目标 的高等教育方式,在专业课程的教学中更加强调应性和培养 学生理论联系实际的能力。当前,我国高等职业教育发展到 新阶段,将数学建模归属为一种创新型的教育。当前我国也 正急需大批创新型人才,培养“应用性专门人才”也成为各 高等职业院校的办学目标。因此传统的数学教学方法不再符 合高职数学课程改革的发展方向,而且职业教育中对于数学 课程的讲解程度、讲解方式、专业侧重也是人们很关注的问 题。而数学模型在创新教学中的运用恰好可以解决理论与实践之间难以沟通的问题。
2如何利用数学建模进行高职数学教学创新 “模型”表示实物运行的过程,是人们把事物的概念具 象化的方式。高职院校往往通过组织学生参加大学生数学建 模竞赛活动,来培养学生的推陈出新的本领、团队协作本领 和解决问题的本领,但最重要的是学生能够学会将问题进行 知识扩展再进行综合运用的能力。当然,高职院校首先需要 做的是引起学生对数学的兴趣,改变大多数人对数学刻板枯 燥的印象。笔者提出以下几点。
2.1对数学必修课的改革 一般高职院校学生的数学基础知识较弱,他们更倾向专 注于自己所学专业的知识和技能。这种现象非常普遍,要解 决这样的情况首先要对教学内容进行改革。因为学生对自己 专业知识的熟悉程度更深,所以应该采用数学理论融入到专 业知识中去的方法,综合运用专业知识和实践产生的具体案 例,引导出学生学习的意义所在,并且让学生懂得并学会运 用书本知识去解决问题。还可以在课程中让学生运用数学软 件计算、解答实际问题。如在教授课程中讲到需求函数时, 可选择将市场需求的调查和需求函数相连接,要求学生对特 定产品的概念和实际需求量进行调研,接着解答出需求函数。
通过这个案例的学习后,学生不但能够掌握专业上如何进行 市场调查,而且具象的了解和学习了需求函数,另外学生在 调查过程中能够激发自己的潜力,培养独立思考、勤动手动脑的好习惯,以及提高了解决生活中问题的积极性,在面对 问题时能够合作思考,各抒己见又能求同存异,学生们的团 队协作能力大大提高。将数学建模融入在专业知识中的做法 能够让看似复杂的专业知识变得简单化,把杂乱的点、线、 面变得有规律,这样学生在学习过程中会发现更深层次的知 识内容。另外高职数学的教材要能够让学生感受到数学概念 和方法的来源,将数学建模的思想从翻开教材的时候就被同 学们所接受。这时再根据实际问题结合数学建模,给学生提 供更多的能够进行实践的案例,就会达到事半功倍的效果。
2.2设置数学建模选修课 高职院校可以在数理实验室经常组织一些数学建模活 动,开辟专门的数学建模实验室,让学生们在其中进行相关 软件的学习和交流以及活动的共同策划等等。由专门的老师 进行教学内容的设计,再配合科学有效的教学方法,最终提 高学生数学建模能力,这样才能充分调动起学生主动对数学 的兴趣。开设数学建模选修课可以专题的形式展开,课程内 容可分类成优化问题、分类问题、预测问题、评价问题、决 策问题等,所涉及的模型包括函数模型、统计模型等。数学 建模的模型建立以及计算则会依照具体案例进行解答,这样 用分类的方式进行数学建模,可根据学生依照自己的爱好来 选择专题,有利于充分调动学生的积极性。建模时,既要注 重合作,也要有每个人不同的负责模块。学生在合作时要认 真听取别人的意见,并总结出每个人适合分工的对象,设身处地站在别人的角度上思考问题,然后再把自己的想法提出。
最后指导老师会对问题进行讲解、答疑,对每位同学的观点 进行评析,并总结出最后的思考方向,指导学生如何进行数 据和信息的收集。
2.3适当增添数学建模实训课程 为了巩固和深化课堂教学的效果,提高学生运用数学建 模的能力,进行实训教学是非常必要的。而且在高职院校中 实训教学也是高职教学的重要方式,会让学生们更好更熟练 的把握专业技能。把实训教学运用到数学建模的学习中去也 能够让学生更好的掌握实验能力。指导老师可以要求开出一 些实践应用性比较强的实训题目,由学生们自由进行分组, 规定各小组在限制的时间段内,在数学建模实验室进行实训, 对学生的任务过程和结果进行严格要求,遵循一般规律,即 提出问题、分析问题、建立模型、求解模型到模型的剖析、 检验、发散,并在每人交一篇逻辑清晰的总结报告。教师要 及时组织大家对活动进行专题讨论,让学生根据自己的报告 内容进行思想与方法的讲述,对报告中出现的每一个问题, 指导老师要组织学生进行集体讨论,不浪费每一个思路和想 法。这样最终得出的结论才是整体智慧的结晶,求同存异是 一个团队最好的状态,个人成就集体,集体带动个人,这样 的教育才是最成功的。最后对于思路清晰,考虑全面,答案 合理的报告也要给予褒奖,以鼓励和促进学生学习高数的积 极性。2.4对教学成果的考核 传统教学成果的考核是采取卷面考试的方式,可是如今 卷面考试的弊端日益呈现。尤其对于实用性和应用性很强的 数学学科来说,卷面考试只能让我们了解到学生记住多少概 念、公式、定理,没有体现出学生看待问题、分析问题、最 终解决问题的能力。因此就数学学科而言,考核标准应该由 卷面笔试创新性的改变为更能检测出个人能力的综合能力 测试,这样方便进行“因材施教”,着重培养,使个人能力 得到最大发挥。数学是很有意义的一门学科,不仅有知识方 面的意义,更多的是对个人思想上的意义。想要最大化发挥 数学建模的效用就需要革新教学模式,把重点放在实训教学 上,遵循理论来自实践,并引导实践发展的规律,扩大两者 相结合带来的作用,让学生养成数学的思维解决生活中问题 的习惯。
3结论 数学建模在高职数学教育中的融入在教育史上是前所 未有的形式,体现的是一种以书本内容为基础、结合逻辑思 维方式进行辨析问题,解开矛盾的意识和实力。这种方式也 能使他们了解到数学无处不在,数学渗透到我们工作学习的 任何一处,并且我们经常使用数学的方式来解决随处可见的 矛盾,以此逐渐消除学生对数学学习枯燥乏味、晦涩难懂的 直观感受,寓教于乐,重点是培养学生将真理和实践相结合 的能力,这样自然而然就达到高职院校开展数学课程的真正目标。而数学建模活动的开展又让学生们体会到竞争的乐趣 和数学的魅力。另一方面来看,数学建模活动也相当于一个 小型的科研活动,教育过程中开展这样的实践活动对教育形 式的创新有着其巨大的现实意义和深远的影响作用。
参考文献:
[1]王丽.高职院校数学教学课程设置新思路[J].成人 教育,2011,(9). [2]李明.将数学建模的思想融入高等数学的教学[D]. 首都师范大学,2009. [3]刘春英.以数学建模为突破口促进高职高等数学教 学改革[J].长春教育学院学报,2011,(6).