科学史融入数学教学激发学生学习的策略分析
科学史融入数学教学激发学生学习的策略分析 将科学史渗透到数学教学中,可以拓宽学生的视野, 进行爱国主义教育,对于增强民族自信心,提高学生素质, 激励学生奋发向上,形成爱科学、学科学的良好风气有着重 要作用。对此,数学教学是有许多工作可做的。下面仅以九 年级下册第三章“圆”为例,就如何将科学史融入课堂教学 谈谈我的做法与体会。1.结合教材内容,使科学史自然融入课堂教学 “圆”是一个古老的课题,人类的生活与生产活动和它 密切相关。有关圆的知识在战国时期的《墨经》、《考工记》 等书中都有记载,授课中将有关史料穿插进去,作为课本知 识的补充和延伸。例如,讲解“圆的定义与性质”时,我向 学生介绍:约在公元前二千五百年左右,我国已有了圆的概 念,考古说明我国夏代奴隶社会以前的原始部落时期就有圆 形的建筑。至于圆的定义和性质在《墨经》中已有记载,其 中,“圆,一中同长也”,即圆周上各点到中心的长度均相 等;
此外,还进一步说明“圆,规写交也”,即圆是用圆规 画出来的终点与始点相交的线。这与欧几里得的定义相似, 而《墨经》成书于公元前4~3世纪,是在欧几里德诞生时间 问世的。再比如圆心角、弓形、圆环形、圆内接正六边形、 直角三角形的内切圆、圆锥等一系列概念与性质,在《墨经》、 《考工记》、《九章算术》等书中都有记载,在讲到这些内 容时,我便用几句话向同学们作简要介绍。这样,随着这一章教材的不断展开,同学们对我国古代在相关领域的发展概 貌有个初步的了解,明白我国古代就对这些内容有了比较全 面、系统的认识。特别是早在战国时期就有了论证几何学的 萌芽,几乎与古希腊的几何学同时产生。
2.根据教材特点,有选择、有针对性地进行教学 圆周率π是数学中的一个重要常数,是圆的周长与其直 径之比。为了回答这个比值等于多少,一代代中外数学家锲 而不舍,不断探索,付出了艰辛的劳动,其中我国的数学家 作出过卓越贡献。该章的“读一读”:关于圆周率π对此作 了简单的介绍,并提到祖冲之取得了“当时世界上最先进的 成就”。为了让同学们了解这一成就的意义,从中得到启迪, 我选配了有关的史料,作了一次读后小结。先简单介绍发展 过程:最初一些文明古国均取π=3,如我国《周髀算经》就 说“径一周三”,后人称之为“古率”。人们通过实践逐步 认识到用古率计算圆周长和圆面积时,所得到的值均小于实 际值,于是不断利用经验数据修正π值,例如古埃及人和巴 比伦人分别得到π=3.1605和π=3.125.后来古希腊数学家 阿基米德(公元前287~212年)利用圆内接和外切正多边形 来求圆周率的近似值,得到当时关于π的最好估值约为:
3.1409,3.1429;
此后古希腊的托勒玫约在公元150年左右 又进一步求出π=3.141666.我国魏晋时代数学家刘微(约公 元3~4世纪)用圆的内接正多边形的“弧矢割圆术”计算π 值。当边数为192时,得到3.141024.后来把边数增加到3072边时,进一步得到π=3.14159,这比托勒玫的结果又有了进 步。待到南北朝时,祖冲之(公元429~500年)更上一层楼, 计算出π的值在3.1415926与3.1415927之间。求出了准确到 七位小数的π值。我国以这一精度,在长达一千年的时间中, 一直处于世界领先地位,这一记录直到公元1429年左右才被 中亚细亚的数学家阿尔·卡西打破,他准确地计算到小数点 后第十六位。这样可使同学们明白,人类对圆周率认识的逐 步深入,是中外一代代数学家不断努力的结果。我国不仅以 古代的四大发明——火药、指南针、造纸、印刷术对世界文 明的进步起了巨大的作用,而且在数学方面也曾在一些领域 内取得过遥遥领先的地位,创造过多项“世界记录”,祖冲 之计算出的圆周率就是其中一项。接着我再说明,我国的科 学技术只是近几百年来,由于封建社会的日趋没落,才逐渐 落伍。如今在向四个现代化进军的新长征中,赶超世界先进 水平的历史重任就责无旁贷地落在同学们的肩上。我们要下 定决心,努力学习,奋发图强。
为了使同学们认识科学的艰辛以及人类锲而不舍的探 索精神,我还进一步介绍:同学们都知道π是无理数,可是 在18世纪以前,“π是有理数还是无理数”?一直是许多数 学家研究的课题之一。直到1767年兰伯脱才证明了π是无理 数,圆满地回答了这个问题。然而人类对于π值的进一步计 算并没有终止,例如1610年德国人路多夫根据古典方法,用 262边形,计算π到小数点后第35位。他把自己一生的大部分时间花在这项工作上。后人为了纪念他,就把这个数刻在 他的墓碑上,至今圆周率被德国人称为“路多夫数”。1873 年英国的向克斯计算π到707位小数。1944年英国曼彻斯特 大学的弗格森分析了向克斯计算的结果后,产生了怀疑并决 定重算一次。他从1944年5月到1945年5月用了一整年的时间 来做此项工作,结果发现向克斯的707位小数只有前面527位 是正确的。后来有了电子计算机,有人已经算到第十亿位。
同学们要问计算如此高精度的π值究竟有什么意义?专家 们认为,至少可以由此来研究π的小数出现的规律。更重要 的是,对π认识的新突破进一步说明了人类对自然的认识是 无穷无尽的。几千年来,没有哪一个数比圆周率π更吸引人 了。根据这一段教材的特点,适当选配数学史料,采用读后 小结的方式,不仅可以使学生加深对课文的理解,而且人类 对圆周率认识不断深入的过程也使学生受到感染,兴趣盎然, 这对培养学生献身科学的探索精神有着积极的意义。
3.吃透教材精神,采取多种形式,增强教学效果 把科学史融入日常教学,进行思想教育,教师不仅要吃 透教材的知识内容,还要努力挖掘教材的思想性,并采取多 种形式,形象生动地进行教学。初三几何教材第七章的7.3 节的例题四,是通过计算赵州桥桥拱的半径,使学生掌据垂 径定理及其推论的应用,也是进行爱国主义教育,激励学生 努力学习科学知识的好材料。为了增强教学效果,上课前我 请美术教师画好赵州桥的彩色图画,当它在课堂上展示时,同学们被这造形奇特、气势雄伟的赵州桥画面吸引住了,等 待教师的讲解。我指着画面向同学们介绍道:“这是河北省 赵县的赵州桥,又名安济桥,建于一千三百多年前的隋代大 业年间(公元605~618年),是一座世界闻名的石拱桥。整 个桥身是圆弧的一段,长50多米,宽9米多。这么长的桥, 全部用石头砌成,没有桥墩,只有一个拱形的大桥洞,横跨 在37米宽的河面上。这样巨型的跨度,在当时是首屈一指。
而更显示其先进技术的,是大拱圈上的两肩各有两个拱形的 小桥洞,既减轻了桥身的重量,节省了石料,还增加了洪水 季节桥下的过水面积,四个小孔可以辅助渲泄洪水,减轻了 洪水对桥身的冲击力,不但坚固而且美观。这种设计是建桥 史上的一个创举,创造了敞肩拱的新式桥型,使拱桥的建造 技术达到了一个新水平。比欧州19世纪建造的同类拱桥早一 千二百多年。赵州桥经历了洪水、地震等自然界的袭击和一 千多年使用的考验,依然巍然挺立,雄姿焕发,是我国宝贵 的历史遗产。它表现了中国劳动人民的智慧和才干,是综合 运用包括数学在内的多种科学知识的典范。下面我们就来算 一算桥拱的半径……”这样引导,同学们情绪高涨,课堂气 氛活跃。
总之,通过对数学史的引入,可以激发学生学习的积极 性,提升学习的效率,更重要的是可以培养学生的爱国主义 情感,为学习科学文化知识增强信心和使命感。
参考文献[1]马复.九年义务教育课程标准试验教科书.数学.九 年级.上册.2007年3月第4版. [2] 王俊兰.学而有道-培养孩子良好的学习方法全书. 天津:天津教育出版社,2009. [3] 王艳玲.中小学课堂评价的观察与分析.现代中学教 育,2006(9).